
МИНИСТЕРСТВО ОБРАЗОВАНИЯ САРАТОВСКОЙ ОБЛАСТИ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ САРАТОВСКОЙ ОБЛАСТИ «ФИЗИКО-ТЕХНИЧЕСКИЙ ЛИЦЕЙ №1»

РАБОЧАЯ ПРОГРАММА

по элективному курсу «Физический практикум» для 10 класса среднего общего образования на 2022–2023 учебный год

Составитель: Мчедлов С.Б., Парфенов А.С. учителя физики «ФТЛ №1» г. Саратов Портнов Сергей Алексеевич учитель физики Андреев Кирилл Александрович ведущий программист

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Элективный курс предназначен для учащихся десятых классов общеобразовательных учреждений естественно - математического профиля.

Элективный курс содержит лабораторные работы и предполагает их выполнение учащимися по таким разделам физики как: "Механика", "Молекулярная физика и термодинамика".

Предлагаемый физический практикум проводится в десятых классах лицея на протяжении всего учебного года, т. е. является постоянно действующим. Регламент работ: по два сдвоенных урока в неделю в каждом классе. Каждый класс делится на две подгруппы, за каждой их которых закреплён учитель-физик. Каждая лабораторная работа выполняется двумя учащимися (парами) по разработанному учителем плану - графику. Каждой паре выдаётся на руки описание к лабораторной работе, содержащее теоретические сведения, описание рабочей установки и практические задания. К выполнению работы, учащиеся допускаются только после собеседования с учителем, ведущим занятия в подгруппе.

Физический практикум дополняет курс физики самостоятельной экспериментальной работой, учит грамотно производить измерения различных физических величин и правильно обрабатывать результаты измерений. Учащиеся, помимо изучения основ теоретических знаний, приобретают умения и навыки по методике и технике физического эксперимента.

Лабораторные работы имеют различную степень трудности. Некоторые из них предназначены для повторения и углубления знаний, приобретённых учениками на более ранних ступенях обучения в лицее.

В основной части работ физического практикума предполагается такая постановка задач в лабораторных работах, когда теоретический расчёт должен быть подтверждён экспериментальными результатами. В некоторых лабораторных работах, в дополнение ко всему, учащиеся в письменном отчёте должны ответить на вопросы, приведённые в конце описания к работе.

Учащиеся должны уметь правильно оценить и степень достоверности полученного числового результата.

МЕСТО ЭЛЕКТИВНОГО КУРСА «ФИЗИЧЕСКИЙ ПРАКТИКУМ» В УЧЕБНОМ ПЛАНЕ

Учебным планом предусмотрено изучение физического практикума в объеме 35 часов по 1 часу в неделю в 10 классах.

ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ФИЗИЧЕСКОГО ПРАКТИКУМА

В экспериментальных установках физического практикума ФТЛ №1 используются:

- 1. Стационарное лабораторное оборудование для школ;
- 2. Изготовленное на саратовском заводе «Сейсмоприбор» физическое оборудование и измерительные комплексы по разработкам в СГТУ профессором, доктором, А.Н. Сальниковым, заведующим одной из кафедр общей физики СГТУ;
- 3. Лабораторные комплекты "Механика", "Молекулярная физика и термодинамика" Федерального государственного унитарного предприятия "Координационно-аналитический центр по научно техническим программам Министерства образования Российской Федерации (ФГУП "ЦЕНТР МНТП"), М., 2002 г.
- 4. Самодельное оборудование и приборы, изготовленные в лицее.

СОДЕРЖАНИЕ УЧЕБНОГО ПРЕДМЕТА

ПЕРЕЧЕНЬ РАБОТ ФИЗИЧЕСКОГО ПРАКТИКУМА

I полугодие

- 1. Проверка закона сохранения энергии под действием силы тяжести и силы упругости;
- 2. Математический маятник;
- 3. Упругое соударение тел Проверка закона сохранения импульса;
- 4. Подвижный и неподвижный блоки;
- 5. Баллистический маятник;
- 6. Математический маятник;
- 7. Определение ускорения свободного падения с помощью вращающегося диска;
- 8. Определение ускорения свободного падения с помощью маятника стержня;
- 9. Определение коэффициента трения стали по стали;
- 10. Определение момента инерции тела сложной формы:
- 11. Определение момента инерции тела с помощью маятника Обербека.

II полугодие

- 1. Исследование изотермического процесса. Закон Бойля-Мариотта;
- 2. Исследование изобарного процесса. Закон Гей-Люссака:
- 3. Исследование изохорного процесса. Закон Шарля;
- 4. Определение отношения удельных теплоёмкостей CP/CV газов адиабатическим методом;
- 5. Определение коэффициента поверхностного натяжения жидкости методом давления в воздушном пузырьке;
- 6. Определение коэффициента поверхностного натяжения жидкости, (методом отрыва контура; капиллярным методом);
- 7. Определение коэффициента поверхностного натяжения жидкости методом капель;
- 8. Определение коэффициента внутреннего трения (вязкости) методом Стокса;
- 9. Определение коэффициента внутреннего трения (вязкости) с помощью вискозиметра;
- 10. Измерение модуля Юнга резины;
- 11. Теплоёмкость жидкости;
- 12. Исследование изменения со временем температуры остывающей воды.

ПОУРОЧНОЕ ПЛАНИРОВАНИЕ

І подгруппа

1 подгр	уппа			
$N_{\underline{0}}$	Тема урока Дата проведения		Примечание	
урока	тема урока	план	факт	приме шие
І полуг	годие			
	ТБ в кабинете физического			
1/1	практикума. Обзор работ на I			
	полугодие. Распределение работ.			
2/2	Определение ускорение			
2/2 -	свободного падения с помощью			
3/3	вращающегося диска			
4 / 4	Определение ускорения			
4/4 —	свободного падения с помощью			
5/5	маятника-стержня			
6/6 -	Определение коэффициента трения			
7/7	стали по стали			
	Определение момента инерции			
8/8 –	тела сложной формы с помощью			
9/9	крутильных колебаний			
10/10				
_	Физический маятник			
11/11				
12/12	Определение момента инерции			
_	тела с помощью маятника			
13/13	Обербека			
14/14	•			
_	Резерв времени на отчет по			
17/17	проделанным работам			
II полу	толие		11	
	ТБ в кабинете физического			
18/1	практикума. Обзор работ на II			
10,1	полугодие. Распределение работ.			
10.5	Определение коэффициента			
19/2	поверхностного натяжения			
_	жидкости методом давления в			
20/3	воздушном пузырьке			
21/4				
	Определение коэффициента			
22/5	вязкости жидкости методом Стокса			
23/6	Определение коэффициента			
	вязкости жидкости с помощью			
24/7	капиллярного вискозиметра			
25/8	Определение коэффициента			
	поверхностного натяжения			
26/9	жидкости методом капель			
27/10	Определение отношения удельных			
	теплоемкостей Ср/Су газов			
28/11	адиабатным методом			
20/11	идпионтини методом			

29/12	Определение коэффициента		
29/12	поверхностного натяжения		
30/13	жидкости методом отрыва,		
30/13	капиллярным методом		
31/14			
_	Теплоемкость жидкости		
32/15			
33/16	Decemb proventy to other to		
_	Резерв времени на отчет по		
35/18	проделанным работам		

II подгруппа

П подгј №		Дата проведения		
урока	Тема урока	план	факт	Примечание
I полуг	годие			
1/1	ТБ в кабинете физического практикума. Обзор работ на I полугодие. Распределение работ.			
2/2 – 3/3	Проверка закона сохранения энергии под действием силы тяжести и упругости.			
4/4 – 5/5	Проверка закона сохранения импульса при неупругих взаимодействиях.			
6/6 – 7/7	Проверка закона сохранения импульса при упругих соударениях.			
8/8 – 9/9	Подвижные и неподвижные блоки.			
10/10 - 11/11	Баллистический маятник.			
12/12 - 13/13	Математический маятник.			
14/14 - 17/17	Резерв времени на отчет по проделанным работам			
II полу	тодие			
18/1	ТБ в кабинете физического практикума. Обзор работ на II полугодие. Распределение работ.			
19/2 - 20/3	Исследование изотермического процесса. Закон Бойля-Мариотта			
21/4 - 22/5	Исследование изобарного процесса. Закон Гей-Люссака			
23/6 - 24/7	Исследование изохорного процесса. Закон Шарля			

25/8	Harramanna va mura IOrena naaveer		
26/9	Измерение модуля Юнга резины		
27/10	Исследование изменения со		
_	временем температуры		
28/11	остывающей жидкости		
29/12	Определение коэффициента		
29/12	поверхностного натяжения		
30/13	жидкости методом отрыва,		
30/13	капиллярным методом		
31/14			
_	Теплоемкость жидкости		
32/15			
33/16	Dagana anawayy ug oryat no		
_	Резерв времени на отчет по проделанным работам		
35/18	проделанным расотам		

УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА

ОБРАЗОВАТЕЛЬНЫЕ УЧЕБНЫЕ МАТЕРИАЛЫ ДЛЯ УЧЕНИКА

- 1. А.А.Пинский. «Физика 10»:
- 2. Г.Я.Мякишев. Б.Б.Буховцев, «Физика 10»;
- 3. О.Ф.Кабардин «Физика»;
- 4. Н.К.Кикоин, А.К.Кикоин «Физика 9»;
- 5. С.Н.Тихонов «Электроника для начинающих»;
- 6. Г.С.Ландсберг «Элементарный учебник физики» в 3 томах:
- 7. Г.А.Зисман О.М.Тодес «Курс общей физики» в 3 томах;
- 8. А.Н.Сальников «Физический практикум», ТД, 2003 г;
- 9. С.В.Степанов, В.Е.Евстигнеев «Методические рекомендации к комплекту лабораторных работ по механике», ФГУП "ЦЕНТР МНТП", М., 2002 г.;
- 10. С.В.Степанов, В.Е.Евстигнеев «Методические рекомендации к комплекту лабораторных работ по молекулярной физике и термодинамике», ФГУП "ЦЕНТР МНТП", М., 2002 г.;

МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ ДЛЯ УЧИТЕЛЯ

- 11. А.А.Пинский. «Физика 10»:
- 12. Г.Я.Мякишев. Б.Б.Буховцев, «Физика 10»;
- 13. О.Ф.Кабардин «Физика»;
- 14. Н.К.Кикоин, А.К.Кикоин «Физика 9»;
- 15. С.Н.Тихонов «Электроника для начинающих»;
- 16. Г.С.Ландсберг «Элементарный учебник физики» в 3 томах:
- 17. Г.А.Зисман О.М.Тодес «Курс общей физики» в 3 томах;
- 18. А.Н.Сальников «Физический практикум», ТД, 2003 г;
- 19. С.В.Степанов, В.Е.Евстигнеев «Методические рекомендации к комплекту лабораторных работ по механике», ФГУП "ЦЕНТР МНТП", М., 2002 г.;
- 20. С.В.Степанов, В.Е.Евстигнеев «Методические рекомендации к комплекту лабораторных работ по молекулярной физике и термодинамике», ФГУП "ЦЕНТР МНТП", М., 2002 г.;

ЦИФРОВЫЕ ОБРАЗОВАТЕЛЬНЫЕ РЕСУРСЫ И РЕСУРСЫ СЕТИ ИНТЕРНЕТ

http://www.edu.ru/ Российское образование. Федеральный портал.

http://www.school.edu.ru/ российский общеобразовательный портал.

http://www.it-n.ru/ Российская сеть творческих учителей.

http://school-collection.edu.ru/catalog/teacher/ Единая коллекция цифровых образовательных ресурсов.

http://festival.1september.ru/ Фестиваль педагогических идей Открытый урок.

http://fipi.ru/Федеральный институт педагогических измерений.

http://yaklass.ru/ Образовательный интернет-ресурс

http://uchi.ru/ Образовательный интернет-ресурс